吊具摆动角度获取方法及装置,和起重机防摇方法及装置与流程

文档序号:13193069阅读:707来源:国知局
导航: X技术> 最新专利> 包装,储藏,运输设备的制造及其应用技术
吊具摆动角度获取方法及装置,和起重机防摇方法及装置与流程

本发明涉及起重设备防摇领域,具体而言,涉及吊具摆动角度获取方法及装置,和起重机防摇方法及装置。



背景技术:

起重设备能够将集装箱沿指定方向(如垂直方向和水平方向)进行移动。一般的工业生产活动中,经常会使用到起重设备。

受到惯性、风力等因素的影响,起重设备在工作的时候,其上的吊具经常会发生摇晃的现象,这会导致抓箱时吊具无法快速准确的对准所要抓取的集装箱,放箱时无法准确的将集装箱放到目标位置,这极大的影响了作业效率。

针对该种情况,需要增加防摇的装置来避免吊具摇晃。相关技术中,通常会采用控制大小车平台加减速等方式来避免吊具摇晃,但防摇效果并不理想。



技术实现要素:

本发明的目的在于提供吊具摆动角度获取方法及装置,和起重机防摇方法及装置,以起重机防摇控制的准确程度。

第一方面,本发明实施例提供了吊具摆动角度获取方法,包括:

获取小车平台沿竖直方向的偏转角度,以及,获取吊具沿小车平台运动方向的待优化摆动角度;

根据偏转角度和待优化摆动角度,计算吊具的实际摆动角度。

结合第一方面,本发明实施例提供了第一方面的第一种可能的实施方式,其中,步骤获取小车平台沿竖直方向的偏转角度,包括:

通过设置在小车平台上的竖直方向角度测量仪直接测量小车平台沿竖直方向的偏转角度。

结合第一方面,本发明实施例提供了第一方面的第二种可能的实施方式,其中,按照如下方式计算小车平台沿竖直方向的偏转角度:

其中,b是小车平台沿竖直方向的偏转角度,ml是两个第五加速度传感器沿小车平台移动方向上的距离,dl1=∫∫a1dt,dl2=∫∫a2dt,a1为一个第五加速度传感器测得的竖直方向的加速度值,a2为另一个第五加速度传感器测得的竖直方向的加速度值;两个第五加速度传感器均设置在小车平台上。

结合第一方面,本发明实施例提供了第一方面的第三种可能的实施方式,其中,两个第五加速度传感器沿小车平台移动方向上的距离大于3.2米。

结合第一方面,本发明实施例提供了第一方面的第四种可能的实施方式,其中,小车平台所在轨道的轨道挠度按照如下公式计算:

dl5=∫∫a5dt;

dl5是轨道挠度,a5是第一加速度传感器所测量得到的加速度值,第一加速度传感器设置在小车平台上。

结合第一方面,本发明实施例提供了第一方面的第五种可能的实施方式,其中,小车平台所在轨道的轨道挠度按照如下方式确定:

获取每个第二加速度传感器距离目标位置的距离,目标位置是小车平台的中心所在的位置;第二加速度传感器为多个;

使用如下公式计算轨道挠度:

dl6=∫∫a6dt;

公式中,dl6是轨道挠度,a6是目标加速度传感器所测量得到的加速度值;目标加速度传感器是所有第二加速度传感器中距离目标位置最近的。

第二方面,本发明实施例还提供了吊具摆动角度获取装置,包括:

获取模块,用于获取小车平台沿竖直方向的偏转角度,以及,获取吊具沿小车平台运动方向的待优化摆动角度;

计算模块,用于根据偏转角度和待优化摆动角度,计算吊具的实际摆动角度。

第三方面,本发明实施例还提供了起重机防摇方法,包括如第一方面的吊具摆动角度获取方法,还包括:

根据吊具的实际摆动角度进行防摇控制。

结合第三方面,本发明实施例提供了第三方面的第一种可能的实施方式,其中,根据吊具的实际摆动角度进行防摇控制包括:

按照如下公式计算小车电机的输入速度:vc=vx+k1(sx-sx’)+k2(vx-vx’)+k3(a)+k4(e);其中,k1-k4为闭环反馈系数,vc为小车电机的输入速度;sx为吊具在小车平台运动方向的规划位置;sx’为吊具在小车平台运动方向的实际位置;vx为吊具在小车运动方向的规划速度;vx’为吊具在小车运动方向的实际位置;a为吊具的实际摆动角度;e为吊具摆动角度传感器测得的角速度值;

按照小车电机的输入速度进行防摇控制。

第二方面,本发明实施例还提供了起重机防摇装置,包括第二方面的吊具摆动角度获取装置,还包括:

防摇模块,用于根据吊具的实际摆动角度进行防摇控制。

本发明实施例提供的吊具摆动角度获取方法,在计算吊具实际摆动角度的时候考虑到了轨道挠度的变化,进而在获取到小车平台沿竖直方向的偏转角度和吊具沿小车平台运动方向的待优化摆动角度后,依据这两个参数计算出了吊具的实际摆动角度,从而一定程度上保证了计算出的实际摆动角度是准确的,进而使得使用该计算出的实际摆动角度进行防摇控制是更为高效的。

为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。

附图说明

为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。

图1示出了本发明实施例所提供的吊具摆动角度获取方法的基本流程图;

图2示出了本发明实施例所提供的吊具摆动角度获取方法的中的第一个原理分析图;

图3示出了本发明实施例所提供的吊具摆动角度获取方法的中的第二个原理分析图;

图4示出了本发明实施例所提供的吊具摆动角度获取装置的模块框架图。

具体实施方式

下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。

针对起重设备防摇的问题,相关技术中,已经出现了一些防摇技术,这些已经出现的防摇技术在使用时,首先需要先确定起重设备上的吊具的位置参数(位置参数包括吊具摆动的角度参数和吊具高度参数,其中通常直接测量吊具摆动的角度),如摆动角度。相关技术中,通常会采用直接测量的方式来获取吊具的摆动角度,这种工况对于司机在设备上手动操作时是可以基本满足要求的,但是对于自动化工况下,对于吊具防摇提出了更高的要求,系统需要通过负反馈的方式来进行防摇,这就需要获取准确的摆动角度。

但本申请的发明人发现,相关技术中已经出现的防摇技术中,获取到的吊具摆动角度不够准确。经过发明人实验和分析,认为在实际使用中,使用某个检测设备直接获取吊具的高度或者摇摆角度的话,获取到的数值的精度不够,这也直接导致了后续使用这些数值进行防摇处理的效果不理想。

针对该种问题,本申请提供了吊具摆动角度获取方法,如图1所示,该方法包括如下步骤:

s101,获取小车平台沿竖直方向的偏转角度,以及,获取吊具沿小车平台运动方向的待优化摆动角度;

s102,根据偏转角度和待优化摆动角度,计算吊具的实际摆动角度。

即,通过步骤s101和步骤s102完成了计算实际摆动角度的任务。如图2所示,示出了本申请所提供的方法的理论分析图。下面,结合图2对本申请的方案进行说明(图中11为吊具;12为在不考虑挠度的情况下的小车轨道,即为与地表平行的水平线;13为考虑挠度的情况下的小车轨道,即为一条曲线;14为小车平台,图中的切线l1指的是小车平台所在位置的小车轨道的切线,水平线l2指的是小车平台所在位置的水平线,吊具中心与传感器的中心连线为l3小车平台所在位置的铅垂线为l4,传感器的轴线为l5;h为吊具实际高度,即小车轨道的最高点所在的水平线与吊具所在的水平线之间的距离,dl为小车平台(优选为小车平台中心点)所在位置的轨道挠度)。

如图2中所示,相关技术中通常采取在小车平台上增加角度传感器的方式直接测量吊具的摆动角度,但使用这种测量的方式实际上测量的是角度d,可以看出,角度d是传感器轴线与目标连线的夹角(也就是步骤s101中的待优化摆动角度,该角度可以通过角度传感器直接测得),此处的目标连线是吊具中心与传感器中心(测量待优化摆动角度的传感器的中心)的连线。直接将该角度d作为吊具的实际摆动角度参与防摇控制是不够准确的,这是由于没有考虑到轨道挠度的影响(挠度主要是在轨道自身重力和吊具对轨道的作用力的影响下产生的)。因而,为了确定准确的吊具实际摆动角度,需要结合轨道沿竖直方向的偏转角度来计算,由于吊具是直接悬挂在小车平台上的,因此应当测量的角度是小车平台沿竖直方向的偏转角度。如图2中所示,使用测量沿竖直方向的角度的测量仪(如水准仪)能够直接测量出角度b(小车平台沿竖直方向的偏转角度,由于轨道挠度而产生的角度,可以通过水准仪直接测量得到),进而,根据几何关系,角度b与角度c(角度c为传感器轴线与铅垂线的夹角,或者说是传感器轴线与重力线的夹角)相等,同时,角度a与角度c之和等于角度d,就可以依据角度b(小车平台沿竖直方向的偏转角度)和角度d(吊具沿小车平台运动方向的待优化摆动角度)直接计算出角度a(吊具的实际摆动角度)了,比如可以按照如下公式计算角度a:a=d-b。

进而,通过上述方案,在考虑了轨道所产生的挠度之后,可以确定出更为精确的摆动角度,进而,使用该角度a进行防摇控制,则可以得到更理想的控制效果。

在上述方案基础之上,本申请所提供的方法还提供了吊具实际高度的计算方法,在步骤s102之后,本方法还包括:

根据小车平台所在轨道的轨道挠度和吊具的实际摆动角度,计算吊具实际高度。

此处,直接参与计算的是小车平台所在轨道位置的挠度,该挠度的获取方式有多种,后文中会进行具体说明。

更具体的,计算吊具的实际高度时可以使用如下公式进行计算:

h=lcos(a)+dl;

其中,h为吊具的实际高度,l为吊具摆长(或者说是小车平台与吊具之间的直线距离,通常是一个预先确定的定值),a为步骤s102中所获取到的吊具的实际摆动角度,dl为轨道挠度(更准确的说,是小车平台所在轨道位置的轨道挠度)。

从而,在确定了准确的吊具的实际摆动角度和吊具的实际高度后,就可以依据这两个参数进行更为准确的防摇控制了。

下面对上述步骤中数据的获取过程进行具体说明。

步骤s101中,获取了两个角度值,分别是小车平台沿竖直方向的偏转角度和吊具沿小车平台运动方向的待优化摆动角度。其中,小车平台沿竖直方向的偏转角度(角度b)有两种获取方式,下面,分别对这两种方式进行介绍:

方式1(获取小车平台沿竖直方向的偏转角度):

可以通过水准仪一类的竖直方向角度的测量仪直接测量得到。通常测量仪是直接设置在小车平台上的,这样测量出的角度更为直接和准确。即,获取小车平台沿竖直方向的偏转角度,包括:

通过设置在小车平台上的竖直方向角度测量仪直接测量小车平台沿竖直方向的偏转角度。

其中,该竖直方向角度测量仪优选设置在小车平台的中心,或者是小车平台上/下表面的中心位置处。

方式2(获取小车平台沿竖直方向的偏转角度),如图3所示(图中11为吊具;12为在不考虑挠度的情况下的小车轨道,即为与地表平行的水平线;13为考虑挠度的情况下的小车轨道,即为一条曲线;14为小车平台,图中的切线l1指的是小车平台所在位置的小车轨道的切线,水平线l2指的是小车平台所在位置的水平线,吊具中心与传感器的中心连线为l3小车平台所在位置的铅垂线为l4,传感器测量的轴线为l5;h为吊具实际高度,即小车轨道的最高点所在的水平线与吊具所在的水平线之间的距离;dl1为设置在小车平台上平面的一个加速度传感器所在位置的挠度,dl2为设置在小车平台上平面的另一个加速度传感器所在位置的挠度,dl为小车平台中心点所在位置的轨道挠度,其余参数与图2中的参数的含义相同,此处不在过多说明):

可以通过设置两个或多个第五加速度传感器的方式来计算出该偏转角度。具体的,这两个第五加速度传感器通常均是设置在小车平台上的,并且,这两个第五加速度传感器是沿小车平台移动的方向顺序间隔设置的(即,这两个第五加速度传感器沿小车平台移动的方向上的位置是不同的)。进而,这两个第五加速度传感器在分别获取到加速度值(a1和a2)之后,就可以利用这两个加速度值来计算偏转角度了。由于两个第五加速度传感器之间的距离相对较小,在该小车平台所在位置的轨道的扰度曲线可近似为直线,具体使用的计算公式如下:

其中,b是小车平台沿竖直方向的偏转角度(角度b),ml是两个第五加速度传感器之间的距离(更准确的说是两个第五加速度传感器沿小车平台移动方向上的距离),dl1=∫∫a1dt,dl2=∫∫a2dt,a1为一个第五加速度传感器测得的竖直方向的加速度值,a2为另一个第五加速度传感器测得的竖直方向的加速度值。也就是在获取到两个第五加速度传感器所测量到的加速度值之后,分别采用二重积分的方式来求得dl1和dl2。这两个第五加速度传感器优选均设置在小车平台的上表面,或下表面。dl1和dl2分别为这两个第五加速度传感器所在位置的轨道挠度。优选的,两个第五加速度传感器沿小车平台移动方向上的距离大于3.2米。

具体使用时,这两个加速度传感器之间的距离越远越好,这两个加速度传感器之间的距离越远,二者得到的所检测得到的加速度值的差别就越大,这样计算出的最终的偏转角度越精确。

上述内容中介绍使用两个加速度传感器进行计算的方式,使用三个或以上的加速度传感器进行计算的方式与使用两个加速度传感器进行计算的方式相似,比如可以先使用加速度传感器1和2所测得的加速度值计算出一个偏转角度,在使用加速度传感器1和3所测得的加速度值计算出另一个偏转角度,而后,再按照加权求平均的方式利用得到的两个偏转角度计算出最终的偏转角度。但,无论使用多少个加速度传感器参与计算,其计算原理都是相似的(均如前两端所提供的方式),因此,使用更多的加速度传感器进行计算的方式不再赘述。

获取吊具沿小车平台运动方向的待优化摆动角度的方式通常是直接通过摆动角度测量仪直接测量的。该摆动角度测量仪通常是设置在小车平台上的,并且,其传感器轴线是朝向下的。

步骤根据小车平台所在轨道的轨道挠度和吊具的实际摆动角度,计算吊具实际高度中,轨道在竖直方向的挠度根据设置在小车平台上的加速度传感器的数量和位置不同,也有不同的获取方式。下面分别对这不同的获取方式进行说明(下述每种情况中的加速度传感器均设置在小车平台上)。

第一种情况,当小车平台上只设置一个第一加速度传感器时,可以直接利用该第一加速度传感器所测得的加速度值进行积分来获得。具体可以使用如下公式进行计算:

dl5=∫∫a5dt;

公式中,dl5是轨道挠度,a5是第一加速度传感器所测量得到的加速度值。也就是,对加速度值进行二重积分就能够得到轨道挠度。该第一加速度传感器优选设置在小车平台的中心,或者是设置在小车平台上/下表面的中心。

第二种情况,当小车平台上设置有2个或以上第二加速度传感器时,则为了保证计算的准确度,应当选择距离小车平台中心该中心线可以理解为钢丝绳与小车平台相接触的点)最近的第二加速度传感器所检测到的数值来参与计算。即应当选择距离钢丝绳(钢丝绳是用来将吊具悬挂在小车平台上的绳索)与小车平台的目标交点最近的第二加速度传感器作为目标加速度传感器,并且使用目标加速度传感器所测量到的加速度值来计算轨道挠度。具体计算方式与第一种情况的计算方式相同。当钢丝绳为多个的时候,此处的目标交点则是根据每个钢丝绳与小车平台的交点计算得到的,目标交点的坐标是一般交点坐标(钢丝绳与小车平台的交点的坐标)的平均值。

具体的,轨道挠度可以按照如下方式确定:

获取每个第二加速度传感器距离目标位置的距离,目标位置是小车平台的中心所在的位置;第二加速度传感器为多个;

使用如下公式计算轨道挠度:

dl6=∫∫a6dt;

公式中,dl6是轨道挠度,a6是目标加速度传感器所测量得到的加速度值;目标加速度传感器是所有第二加速度传感器中距离目标位置最近的。其中,第二加速度传感器优选均设置在小车平台上。

第三种情况,当小车平台上设置有2个或以上第三加速度传感器时,则为了保证计算的准确度,可以采用加权求平均的方式来计算轨道挠度。具体的,则是按照第一种情况的方式,使用每个第三加速度传感器所检测得到的加速度值,计算出相应的参考挠度;而后,按照加权求平均的方式,计算出最终的轨道挠度。

具体的,轨道挠度可以按照如下方式确定:

使用如下公式计算每个第三加速度传感器所对应的参考挠度:

dl7=∫∫a7dt;

公式中,dl7是参考挠度,a7是指定的第三加速度传感器所测量得到的加速度值;

按照加权求平均的方式,根据参考挠度计算轨道挠度。

即,可以使用计算得到的全部挠度的平均值作为轨道挠度。

第四种情况,将第二、三种情况进行结合。执行步骤如下:

获取每个第四加速度传感器距离目标位置的距离,目标位置是小车平台的中心所在的位置;第四加速度传感器为多个;

判断参考距离是否小于预设的距离;参考距离是距离小车平台的中心最近的第四加速度传感器与小车平台中心之间的距离;

若是,则使用如下公式计算轨道挠度:

dl3=∫∫a3dt;

公式中,dl3是轨道挠度,a3是目标加速度传感器所测量得到的加速度值;目标加速度传感器是所有第四加速度传感器中距离目标位置最近的;

若否,则使用如下公式计算每个第四加速度传感器所对应的参考挠度:

dl4=∫∫a4dt;

公式中,dl4是参考挠度,a4是指定的第四加速度传感器所测量得到的加速度值;

按照加权求平均的方式,根据参考挠度计算轨道挠度。

即,第四种情况中,在确定了距离和后,先判断目标加速度传感器与小车平台的中心距离是否足够近,足够近的话,则按照第二种情况的方式进行计算,否则,就按照第三种情况的方式进行计算。

上述内容介绍了计算吊具的实际摆动角度和计算吊具的实际高度的方式,在确定实际摆动角度之后(优选计算出吊具的实际高度后),就可以利用这两个参数来进行防摇控制。

具体的,本申请还提供了起重机防摇方法,在步骤s102后,还包括:

根据吊具的实际摆动角度进行防摇控制。

具体操作时,除了根据实际摆动角度进行防摇控制,还可以进一步依据吊具实际高度进行防摇控制,进而,步骤根据吊具的实际摆动角度进行防摇控制可以按照如下方式操作:

即可以按照如下公式计算小车电机的输入速度(用来调整小车平台沿轨道的运动速度):

vc=vx+k1(sx-sx’)+k2(vx-vx’)+k3(a)+k4(e);

其中,k1-k4为闭环反馈系数,其确定方式可参考专利cn106829740(一种起重机防摇控制方法及系统),这四个参数均为反馈系数,且具体数值可以根据具体使用情况进行调整,vc为小车电机的输入速度;sx为吊具在小车平台运动方向的规划位置;sx’为吊具在小车平台运动方向的实际位置;vx为吊具在小车运动方向的规划速度;vx’为吊具在小车运动方向的实际位置;a为吊具的实际摆动角度;e为吊具摆动角度传感器测得的角速度值。

以及,可以按照如下公式计算升起电机(用来调整吊具高度)的输入速度:

vl=vc+k5(sz-sz’)+k6(vz-vz’);

其中,k5,k6为调整系数,为pi整定参数;sz为吊具起升方向的规划位置;sz’为吊具起升方向的实际位置;vz为吊具起升方向的规划速度;vz’为吊具在起升方向的实际位置(即吊具的实际高度);vl为起升电机的输入速度;vz’=dh/dt;

按照小车电机的输入速度,和/或升起电机的输入速度进行控制。

即,按照小车电机的输入速度控制小车平台的移动,以及,按照省级电机的输入速度控制升起电机转动。

与前述方法相对应的,本申请还提供了吊具摆动角度获取装置,如图4所示,包括:

获取模块401,用于获取小车平台沿竖直方向的偏转角度,以及,获取吊具沿小车平台运动方向的待优化摆动角度;

计算模块402,用于根据偏转角度和待优化摆动角度,计算吊具的实际摆动角度。

与前述方法相对应的,本申请还提供了起重机防摇装置,包括:

防摇模块,用于根据吊具的实际摆动角度进行防摇控制。

防摇模块具体包括:

第一计算单元,用于按照如下公式计算小车电机的输入速度:

vc=vx+k1(sx-sx’)+k2(vx-vx’)+k3(a)+k4(e);

其中,k1-k4为闭环反馈系数,其确定方式可参考专利cn106829740(一种起重机防摇控制方法及系统),这四个参数均为反馈系数,且具体数值可以根据具体使用情况进行调整,vc为小车电机的输入速度;sx为吊具在小车平台运动方向的规划位置;sx’为吊具在小车平台运动方向的实际位置;vx为吊具在小车平台运动方向的规划速度;vx’为吊具在小车平台运动方向的实际位置;a为吊具的实际摆动角度;e为吊具摆动角度传感器测得的角速度值;

第二计算单元,用于按照如下公式计算升起电机(用来调整吊具高度)的输入速度:

vl=vc+k5(sz-sz’)+k6(vz-vz’);

其中,k5,k6为调整系数,为pi整定参数;sz为吊具起升方向的规划位置;sz’为吊具起升方向的实际位置;vz为吊具起升方向的规划速度;vz’为吊具在起升方向的实际位置(即吊具的实际高度);vl为起升电机的输入速度;vz’=dh/dt;

控制单元,用于输出小车电机的输入速度,和/或输出升起电机的输入速度。

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。

在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。

另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。

所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:u盘、移动硬盘、只读存储器(rom,read-onlymemory)、随机存取存储器(ram,randomaccessmemory)、磁碟或者光盘等各种可以存储程序代码的介质。

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

完整全部详细技术资料下载
当前第1页 1  2 
相关技术
  • 一种电动葫芦限位装置的制作方...
  • 一种狭窄空间内设备吊装方法与...
  • 电动葫芦上下限高度及防冲顶冲...
  • 一种天车的制作方法
  • 电动葫芦上下限位及防冲顶冲底...
  • 一种建筑幕墙板安装运输装置的...
  • 自动导绳卷绕卷筒的制作方法
  • 一种具有距离显示装置的汽车生...
  • 基于矿用收绳绞车的自动排绳装...
  • 用于RFID系统的移动式龙门...
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1
起重机吊具相关技术
  • 起重机吊具防摇摆机构的制作方法
  • 双杆起重吊具的制作方法
  • 起重吊装管材的吊具及系统的制作方法
  • 集装箱龙门起重机吊具倾转控制方法
  • 集装箱龙门起重机吊具主动防摇方法
  • 集装箱龙门起重机吊具主动防摇装置的制造方法
  • 臂架型起重机集装箱吊具稳定器的制造方法
  • 一种多点式吊具的制作方法
  • 一种绳索无交叉无夹角的卷筒滑轮吊具的制作方法
  • 基于边缘检测的集装箱起吊防撞定准系统的实现方法
起重机防风装置相关技术
  • 起重机梁反力装置的制造方法
  • 一种防风锚定装置及起重机的制造方法
  • 一种大型石膏板起重机弱风装置的制造方法
  • 一种重载双轨起重机运行机构支撑装置的制造方法
  • 一种起重机运行防脱轨装置的支架的制造方法
  • 一种起重机同步装置的制造方法
  • 滑盖温室滑盖前部防风装置的制造方法
  • 可拖运式起重装置的制造方法
  • 改进的起重机吊带调节装置的制造方法
  • 一种防风节水护苗装置的制造方法
起重机安全保护装置相关技术
  • 一种用于起重机的防撞报警保护系统的制造方法与工艺
  • 一种角度可调式起重机减摆装置的制造方法
  • 一种用于起重机运行机构的多功能保护装置的制造方法
  • 一种起重机怠速熄火系统、方法和装置与制造工艺
  • 起重机梁反力装置的制造方法
  • 一种大型石膏板起重机弱风装置的制造方法
  • 专用起重装卸设备保护装置的制造方法
  • 一种重载双轨起重机运行机构支撑装置的制造方法
  • 一种起重机运行防脱轨装置的支架的制造方法
  • 一种起重机同步装置的制造方法
起重机的安全装置相关技术
  • 一种防风锚定装置及起重机的制造方法
  • 一种大型石膏板起重机弱风装置的制造方法
  • 一种重载双轨起重机运行机构支撑装置的制造方法
  • 防坠落的安全装置的制造方法
  • 一种起重机运行防脱轨装置的支架的制造方法
  • 一种起重机同步装置的制造方法
  • 一种起重机副臂固线装置的制造方法
  • 一种吊钩起重安全装置的制造方法
  • 一种用于保护起重机驾驶员的安全装置的制造方法
  • 一种带有安全装置的烟草展示柜的制作方法
起重机限位装置相关技术
  • 一种起重机运行机构上可调节的限位装置的制造方法
  • 一种大吨位起重机大车终端限位缓冲装置的制造方法
  • 起重机双葫芦小车联动限位防护系统的制作方法
  • 一种起重机下行程限位装置的制造方法
  • 机械压力机装模高度限位装置的制造方法
  • 一种起重机远程控制装置的制造方法
  • 电动绞磨机安全限位装置的制造方法
  • 一种起重机运行机构防脱轨平衡装置的制造方法
  • 一种起重机小车的限位报警装置的制造方法
  • 一种起重机防超程轨道槽限位器的制造方法
起重机安全装置相关技术
  • 一种起重机运行防脱轨装置的支架的制造方法
  • 一种起重机同步装置的制造方法
  • 可拖运式起重装置的制造方法
  • 改进的起重机吊带调节装置的制造方法
  • 一种起重机副臂固线装置的制造方法
  • 一种柱式海洋平台起重机滴油盘装置的制造方法
  • 一种新型起重机防风铁楔装置的制造方法
  • 一种用于塔式起重机基础制作的辅助调整水平度装置的制造方法
  • 一种带安全监控功能的起重机无线遥控装置的制造方法
  • 一种便携式起重装置的制造方法
塔式起重机安全装置相关技术
  • 一种起重机防风锚固装置的制造方法
  • 导向起重装置的制造方法
  • 一种用于塔式起重机的附着框架装置的制造方法
  • 一种起重机驾驶室的遮阳装置的制造方法
  • 一种起重机驾驶室的防酒驾装置的制造方法
  • 一种用于保护起重机驾驶员的安全装置的制造方法
  • 一种起重机的风力检测装置的制造方法
  • 一种起重机机架的垂直度监测装置的制造方法
  • 机器房的起重装置及具有该装置的门座式起重机的制作方法
  • 一种安装在起重机桁架式起重臂的设备控制装置的制造方法
起重机防脱钩装置相关技术
  • 起重机梁反力装置的制造方法
  • 一种大型石膏板起重机弱风装置的制造方法
  • 一种重载双轨起重机运行机构支撑装置的制造方法
  • 起重机副钩双制动机构的制造方法与工艺
  • 一种起重机运行防脱轨装置的支架的制造方法
  • 一种起重机同步装置的制造方法
  • 起重机钢丝绳防脱槽装置的制造方法
  • 塔吊用安全防脱钩装置的制造方法
  • 一种防脱钩装置的制造方法
  • 一种起重机吊钩的防脱钩装置的制造方法

玻璃钢生产厂家美陈装饰开业美陈商场玻璃钢小雕塑制作工艺小品玻璃钢人物雕塑规格招远玻璃钢南瓜屋雕塑宁夏广场玻璃钢雕塑制作温州玻璃钢动物雕塑常州玻璃钢人物雕塑厂家江门能透光玻璃钢雕塑造型贵阳小区玻璃钢雕塑玻璃钢瓜果雕塑工厂玻璃钢动漫雕塑制作商北京玻璃钢几何雕塑西安公园玻璃钢雕塑公司雕塑 玻璃钢承德玻璃钢广场雕塑低价的玻璃钢雕塑造型安阳知名玻璃钢彩绘雕塑欧式玻璃钢人物雕塑销售方法北京超市商场美陈销售黑龙江大型玻璃钢雕塑制作变形金刚玻璃钢雕塑延安卡通玻璃钢雕塑安装玻璃钢雕塑表面打蜡龙岗玻璃钢雕塑厂家南京玻璃钢雕塑摆件研发珠海郑成功玻璃钢人物雕塑广东超市商场美陈厂家供应茂名玻璃钢人像雕塑管庄商场美陈创意园林玻璃钢动物雕塑销售厂家香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声单亲妈妈陷入热恋 14岁儿子报警汪小菲曝离婚始末遭遇山火的松茸之乡雅江山火三名扑火人员牺牲系谣言何赛飞追着代拍打萧美琴窜访捷克 外交部回应卫健委通报少年有偿捐血浆16次猝死手机成瘾是影响睡眠质量重要因素高校汽车撞人致3死16伤 司机系学生315晚会后胖东来又人满为患了小米汽车超级工厂正式揭幕中国拥有亿元资产的家庭达13.3万户周杰伦一审败诉网易男孩8年未见母亲被告知被遗忘许家印被限制高消费饲养员用铁锨驱打大熊猫被辞退男子被猫抓伤后确诊“猫抓病”特朗普无法缴纳4.54亿美元罚金倪萍分享减重40斤方法联合利华开始重组张家界的山上“长”满了韩国人?张立群任西安交通大学校长杨倩无缘巴黎奥运“重生之我在北大当嫡校长”黑马情侣提车了专访95后高颜值猪保姆考生莫言也上北大硕士复试名单了网友洛杉矶偶遇贾玲专家建议不必谈骨泥色变沉迷短剧的人就像掉进了杀猪盘奥巴马现身唐宁街 黑色着装引猜测七年后宇文玥被薅头发捞上岸事业单位女子向同事水杯投不明物质凯特王妃现身!外出购物视频曝光河南驻马店通报西平中学跳楼事件王树国卸任西安交大校长 师生送别恒大被罚41.75亿到底怎么缴男子被流浪猫绊倒 投喂者赔24万房客欠租失踪 房东直发愁西双版纳热带植物园回应蜉蝣大爆发钱人豪晒法院裁定实锤抄袭外国人感慨凌晨的中国很安全胖东来员工每周单休无小长假白宫:哈马斯三号人物被杀测试车高速逃费 小米:已补缴老人退休金被冒领16年 金额超20万

玻璃钢生产厂家 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化