【学习】GAN

一、生成式对抗网络GAN

把网络当成一个generator,输入会加上一个random variable 随机变量z。这个z是从某一个distribution 里面simple出来的,z和x作为网络的输入,y为输出。每次我们用这个网络的时候都是随机生成的,每次都不同。
z必须够简单!
随着每次的z不同,我们的输出y不再固定,输出的y分布是一个复杂的分布。
这种可以输出一个distribution的网络叫做generator。
在这里插入图片描述

为什么我们需要generator?为什么要输出一个分布呢?

如果要预测一个游戏画面,我们就可以把之前的游戏画面输入到网络里面,然后就能预测未来输出画面,这样我们就能训练我们的网络的输出跟真实值越接近越好。
在这里插入图片描述
但是这样的例子会有一些问题:小精灵分裂或者消失。在训练资料里面,有些相同场景会产生不一样的移动(一个向左一个向右走)!网络学到的就是结合几个画面,那就可能会产生分裂!网络学到的是向左右分开是对的,但是同时是不对的。
其实这跟之前说到的一个火车也很类似。
在这里插入图片描述
我们怎么解决这个问题呢?我们能不能让网络只输出一个单一输出,而是输出一个概率,决定输出应该是什么样子呢?可以,我们可以使用GAN。

在这里插入图片描述
什么时候我们需要distribution呢?当我们的任务需要一点“创造力”的时候。我们需要找一个方程,但是同样的输入有多种不同的输出,那我们就让机器具有自己决定的能力(应该是具有一点随机性)。
在这里插入图片描述

generative adversarial network(GAN)

	下面的例子是一个无条件生成(unconditional generation)的例子,也就是把输入x去掉,只留下z输入,输出为y。z是一个正态分布sample出来的向量,这个向量是low-dim vector,维度自己决定。

下面是一个动漫人物脸生成的例子。其实生成一张图片相当于是生成一个高维向量(high-dim vector)。假如我们生成一个ab的彩色图片,那我们需要输出的高维向量就是ab*3的向量。当我们输入不同的z的时候,就得到不同的照片。当然,我们也可以不用正态分布,只要简单的distribution就行了,因为generator会把输入的简单的z对应到复杂的distribution。可以把选择distribution交给generator处理。
在这里插入图片描述
在GAN里面,除了需要训练generator(NN)之外,还要另外训练一个discriminator(也是一个NN,相当于一个方程)。discriminator的作用是把一张图片作为输入,输出是一个数值scalar(数值越大,越像一张二次元人物图)。
在这里插入图片描述
generator的任务是画出二次元人物图像,discriminator相当于分辨这个图像。
在这里插入图片描述

第一代的generator V1画出很模糊的图片,第一代的discriminator V1判断的一句是不是有眼睛。很明显就判断为没有。V2画出明显的眼睛,骗过discriminator V1,但是discriminator V2还是升级了。然后一代代升级,generator和discriminator越来越严格。以前很多人把他们说成是对抗的!
在这里插入图片描述

1、算法algorithm

首先要初始化generator(G)和discriminator(D),对于每一个训练迭代都有以下步骤:
step1:固定G,训练D。因为我们的输入z是随机的,所以在固定的G里面生成出俩的图像是模糊不清的。我们在一个数据集里面sample出一些样本,然后把这些样本和G产生的图片去训练D。
D的训练目标是分辨真正的图片和产生的图片之间的差异。
具体做法可以是下面的两种:
classification问题:我们可以把这个任务当成分类问题做,把真实图片标记为1,把生成图片标记为0。对于D来说,标记1的是一个类别,标记0的是另外一个类别,然后我们就可以训练一个classifier。
regression问题:对于D来说,看到真实图片输出1,看到生成图片输出0。
在这里插入图片描述
step 2:固定D,训练G。G需要去学习生成一些图片来“骗过”D。
操作:高斯分布sample出的向量作为输入,输出是一个图片。把这个图片输入到D里面,D会输出一个分数。因为D的参数是固定的,所以我们需要对G的参数进行更新。**怎么判别G生成图片的好坏呢?查看D的得分,我们希望得分越高越好!**在G调整参数之后,D输出的分数很高 ,那生成的图片就很接近真实图片了!也就是说,我们可以看层G和D是一个有很多层网络的网络NN,我们把D和G接起来看做是一个比较大的网络。在某个隐藏层里面,它的输出是非常宽的,大小就是ab3(像素*3)。我们希望调整参数之后,这个大网络输出的分数越大越好。
在这里插入图片描述
训练好这两步的时候,我们就不断反复上面的两个步骤,直到得到满意的结果。
在课程里面,2019年李宏毅老师就能实现这个模型,产生明显的动漫头像。如果想要产生人脸,可以参考progressive GAN。
在这里插入图片描述
输入不同的值,做内插,可以得到一张连续的脸!
在这里插入图片描述

2、原理

我们训练这个GAN,需要最大化或者最小化的是什么呢? 我们输入一个高斯分布随机出来的分布到G里面,然后输出PG,我们有一个真是的分布Pdata,希望PG和Pdata越接近越好。用在以为向量里面就是如下图所示,我们有一个公式来,其中Div表示PG和Pdata之间的divergence分散。如果divergence越大,就表示这个distribution(PG和Pdata)越不像。
我们希望找到下面的generator G*,得到PG和Pdata之间的分散程度最小。这个跟我们之前学习的希望找到最小的那个LOSS方程很像。
在这里插入图片描述
我们怎么找到一个方程来计算两个分布之间的离散度最小值呢?
GAN能够有一个很好的方案来解决这个问题。
不需要知道PG和Pdata之间的分布是什么样的,只要我们能够从PG和Pdata里面取样sample,我们就能算出divergence。
如下是sample的方法:
在这里插入图片描述

要实现这个方法,我们就要借助discriminator!

我们用从PG和Pdata取样出来的数据来训练D,我们希望D看到真实数据Pdata就给予高分,看到生成数据PG就给予低分。我们也可以看成是optimization的问题:我们要训练一个D,这个D可以取一个objective function V(G,D)的最大值。我们的y是从Pdata里面取样出来的,y是真实图片。我们把y放到D里面得到的分数取log;另外一批y是从PG里面取样出来的,我们也把他放到D里面,用1减去得到的分数取log。我们希望这个V(G,D)越大越好,也就是我们希望log【D(y)】越大越好。因为真是图片经过D之后分数高,但是生成图片经过D分数低。相当于训练一个二元分类问题。
在这里插入图片描述

divergence跟objective function相关

事实上,这个目标函数V(G,D)是跟divergence有关的!假如两组数据之间有很小的divergence,也就是说他们是很接近的,那D就很难分开这两类数据,那我们就不能让目标函数的值非常大,那我们求出的目标函数的最大值就比较小。假如我们的两组数据比较分散,那D就能很明显的分出两组数据,那目标函数的最大值就比较大。
在这里插入图片描述
在这里插入图片描述
JS散度是对称的,其取值是 0 到 1 之间。如果两个分布 P,Q 离得很远,完全没有重叠的时候,那么KL散度值是没有意义的,而JS散度值是一个常数。这在学习算法中是比较致命的,这就意味这这一点的梯度为 0。梯度消失了。
因为divergence跟objective function相关,所以我们可以把之前的G和D做一个替换!
在这里插入图片描述
式子G*表示:我们要找一个最大的V(G,D)使得D最大,然后找max V(G,G)使得G最小!这个式子里面跟刚才的两个步骤非常像!
在这里插入图片描述
我们也可以用不同的散度:
在这里插入图片描述
事实上我们minimize JS divergence,结果也没有很好。GAN还是没有很好训练

3、训练GAN的小技巧

JS divergence不适合

(1)PG和Pdata重叠的部分很少。
PG和Pdata是高维空间里面低维的manifold。在高维空间里面随便选择几组点是没办法构成一张二维图片的,二次元人物头像的分布在高维中是很小的。一张图片可以看做是高维空间中的一条曲线,那么这种图片之中的重叠就可以被忽略了!
(2)在我们取样的时候,如果取样的点比较小,那就会有明显的分界让两个类别分开!
在这里插入图片描述
这种完全没有重叠的问题对JS divergence有什么影响呢?
对于两个没有重叠的分布,JS散度总是log2。
下图是从一条轴上表示两个分布之间的距离。虽然从左到右两个分布是不断接近的,但是对于JS散度来说,他们都是log2(常数),因为他们没有重叠的部分。只有两个分布重叠才有可能是别的值(0)。
在这里插入图片描述
如果我们的两个分布是没有重叠的,那我们的二元分类器的精度总是100%正确的。也就是说我们的取样样本较少,很容易就能区别两种分布!那这种loss和accuracy就没有意义了,这种对我们的训练是没有用的,因为我们希望不断的训练改善我们的模型!
在这里插入图片描述

4、Wasserstein distance/earth mover distance

那我们能否换掉JS散度呢?Wasserstein distance。
假如我们在开一个推土机earth mover,有两个分布P和Q,把P看成是一堆土,Q看成是我们需要放土的目标target。那我们把P移动到Q的平均距离d就是Wasserstein distance。
在这里插入图片描述
如果是复杂的分布,我们要计算Wasserstein distance就有点困难。如果我们需要塑造P和Q的形状比较相近,那就有很多种方法来做了!Wasserstein distance穷举了所有可能的方法,然后看看哪个方法可以让推土的计划距离最小,这个最小的值才是Wasserstein distance。那这里就引入了一个optimization问题。
在这里插入图片描述
对比JS散度和Wasserstein distance,可以看出来从左到右我们的W是越来越小的,但是我们看JS是没有什么参考价值的!
在这里插入图片描述
当我们的GAN用Wasserstein distance来取代JS散度的时候就叫做WGAN

5、WGAN

下面这个式子可以用来计算Wasserstein distance:
在这里插入图片描述
这里把x带入distribution里面计算,得到的值算期望。可以看到我们希望Pdata里面算出来的值越大越好,PG里面的值算出来越小越好。D限制是一个1-lipschitz,也就是D是一个平滑的方程。如果我们没有限制D的话,我们算出来的两个类别的值可能无限大或者无线小。
在这里插入图片描述
有了这个限制,两个类别的差别就不会很大。
在早期的WGAN里面,是这样限制D的:假如参数的权重超过c,就设置为c;假如小于-c,就设置为-c。
后来出现了一个improved WGAN,在两个类别里面分别取一个值,然后连起来,取线上的一个值,保持这个值的梯度接近1。
在这里插入图片描述
现在最好的GAN是special normalization(SNGAN)。
虽然SNGAN好,但是GAN还是比较难训练的。
如果D和G其中一个出问题,这个网络就会一直崩坏下去。
在这里插入图片描述
GAN最难的是用来生成文字。cnn 是平均max 会变化,这里的max 不变所以不能做gradient descent。没有变化那我们就不能用来训练模型了。
在这里插入图片描述
之前说遇到不能用梯度下降的方法做训练,那我们可以试试用强化学习RL。强化学习是一类算法,让计算机从什么都不懂,通过不断尝试,从错误中学习,找到规律,从而到达目标的过程。计算机需要一位虚拟的老师,他要做的事情就是给行为打分,计算机只需要记住高分和低分对应的行为,下一次只需要执行高分行为就能得到高分(分数导向性)。类似于监督学习中学习正确标签,不同的是,强化学习最开始没有准备好的数据和标签,是在不断的尝试中得到数据和对应的标签(奖励值)。但是RL也很难训练!
下面是一个可以训练的模型:可以输出文字的GAN(scratch GAN)
在这里插入图片描述
除了GAN之外,还有更多的generative model,但是GAN的performance比较好。
在这里插入图片描述
我们能不能用监督学习的方法来做generative的任务呢?
我们可以用高斯分布随机出来的向量作为输入,代表每一张图,然后放到网络里面训练。但是我们放随机的向量可能就训练不起来了!
在这里插入图片描述

6、评估

以前GAN生成的图片是用人眼来看出来的,但是这样很不可信。
在图像识别的领域,输入一个图片,经过off-the-shelf 图片分类器之后输出一个概率分布。这个概率都比较肯定自己输出的是什么什么东西。
在这里插入图片描述

mode collapse问题

但是只用这个方法是不行的,会出现一个mode collapse问题。也就是产生的图片一直都是那几张,而真是数据分布很广。也就是出现了D的盲点,G一直生成这种图片。
在这里插入图片描述
BGAN解决了这个mode collapse的问题。G在训练的时候会吧train point保存下来,在出现mode collapse的时候会把训练停下,然后把之前的模型拿出来用。谷歌爆搜参数还是没有解决mode collapse问题。

mode dropping问题

虽然生成的数据很好的贴切真实数据,但是其实真实数据是更大的一个范围。比如说下面,在上一次循环里面我们虽然没有看出来什么区别,但是在下一次循环里面我们发现:同一次循环的肤色是一样的!虽然GAN生成的脸比较真实,但是还是只有几张脸,多样性好像并不是很够。而且仔细看之后也能分辨出这是一张生成的脸了。
在这里插入图片描述
怎么解决呢?过去的做法:不同的图片放到CNN里面训练,如果输出的图片分布的比较像(所有输出图片概率求和取平均),能很好的分辨出是哪个类别的,那可能多样性就不够了。
在这里插入图片描述
如果是不同的图片放进去,经过CNN之后产生的输出分布很不一样,而去概率求和平均之后得到的分布很平均,这时候我们的多样性可能就是足够了。
在这里插入图片描述
从图中可以看出来,初始得分inception score (IS)代表着好的quality和大的多样性。对于一张图片来说,输出的结果能很好的分出这是什么类别的,那这是good quality;一堆图片的类别平均比较平均,那diversity 就比较大。但是我们不用IS做人脸图片生成,而是使用FID。
我们取进入softmax之前的最后一层hidden layer 的输出向量代表这个图片。红色的点代表把真实图片放到CNN训练之后得到的输出向量,这个向量维度很高。而蓝色的点是G生成的图片的输出向量。假设这两种输出向量都是高斯分布,然后去计算他们之间的FID。我们希望FID越小越好。
在这里插入图片描述
但是当做高斯分布会有问题,而且如果要准确得到我的网络的分布,那可能需要大量的样本,需要较大运算量。在结果我们不止看FID,也看侦测出来的人脸的指标。
比较如下多种GAN和VAE,VAE对于不同的随机种子差距比较小,而不同的GAN对于不同的随机种子之间的差距大,GAN产生的结果比VAE好。不同的GAN的网络结构还是差不多的。
在这里插入图片描述

memory GAN问题

生成图片和真实图片一模一样,FID很小,但是我们并不希望得到这样的图片。G是对真实图片进行“背诵”了
在这里插入图片描述

7、conditional generator

用文字产生图片

之前将的generator的输入都是一个随机分布的。但是现在我们可以操控G的输出,我们给定一个condition x ,让他根据x和z来产生y。conditional generator可以应用在文字生成图片的任务中,这种任务是监督学习,我们需要一些监督label数据,具有图片文字描述的。在这个任务我们的x就是一段文字。虽然每次的x可能是一样的,但是因为z是随机生成的,所以每次生成的图片都是不一样的。
在这里插入图片描述
我们根据刚才说的GAN的步骤在G里面输入x和z,输出一张图片y,然后把输出的图片y输入到D里面,得到一个数值scalar。我们用这个数值来判断生成的图片和真实图片是否相似,真实图片是数值是1,生成图片的数值是0。但是这种方法在我们加了x进去之后就会出现一些问题:
我们输入的x是用来控制输出图片的,但是随着D和G之间逐步迭代训练,我们的G生成的图片会越来越符合D的要求来“骗”过D。但是这个过程中,会完全忽略了输入的condition x。
在这里插入图片描述
所以在D里面我们不仅要看y,还要加入x!我们希望这个y能跟真实图片越来越像,而且y是符合x 的描述的。所以我们需要的资料有标注label。真实的图片文字对会给1分,生成的图片和文字会给0分。
在这里插入图片描述
但是在应用中我们通常不止有这两种资料,还有另外一种:已经产生的图片和与图片不符的文字(0)。
在这里插入图片描述

用图片产生图片

当然我们也可以让x是图片。这种任务叫image translation(pix2pix)
在这里插入图片描述
只有GAN的时候会产生一些额外的东西,所以我们加入supervise
在这里插入图片描述

从声音画出图片

在这里插入图片描述
此外,也能用condition GAN生成可移动的图。

8、GAN用在无监督学习上

我们有一堆不成堆的x和y,他们是没有标签的。
在这里插入图片描述
在图像风格转换的任务里,我们要把三维世界的图片转换为二次元图片,那我们就是没有什么成对的资料。
在这里插入图片描述
在这里插入图片描述

cycle GAN

套用原来的GAN是可以的,但是还是有点问题,输出图片跟输入好像没有关系。那我们怎么强化输入和输出的关系呢?但是我们的资料没有成对的,那我们怎么套用conditional GAN呢?所以我们用另外一种办法:加入另外一个G。Gxy从输入x domain里面得到一张图片是y domain的,这张图片又用来作为另一个Gyx的输入得到一张x domain的图。我们希望输入和输出越接近越好。但是这样还是没有保证我们输出的图片是我们想要的,只能说这种问题不常见,输入和输出还是很相似的。
在这里插入图片描述
还能做反向的训练,从二次元图片转换为三次元的图片:
在这里插入图片描述
还有别的方法:但是他们是不同的团队,一样的想法
在这里插入图片描述
还有一种starGAN能对图片进行多种风格转换。

在这里插入图片描述

text style transfer

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、总结

1、我们为什么需要一个generator和distriminator呢?因为:机器学习生成结果混乱;我们希望结果出现一些随机性……
2、GAN算法的原理:generator和distriminator之间不断进行迭代更新,最终得到更好的结果。
3、训练GAN:Wasserstein distance替代JS散度,解决精度总是总是100%的情况。
4、应用:GAN用于文字生成;GAN也可以用于的输入是图片,输出是图片的任务。
5、评估:mode collapse问题(BGAN可解决)、mode dropping问题(IS评估得分或者FID)、 memory GAN问题。
6、conditional generator、cycle GAN、starGAN、 text style transfer。

Raphael9900
关注 关注
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
P60 生成式对抗网络GAN -生成器效能评估与条件式生成
weixin_39107270的博客
01-05 381
scratch gan 可以训练温习。GAN 生成一段文字,很困难。
推土机距离(Wasserstein distance)以及其他几种常用的分布差异度量方法(mark)
cnjs1994的博客
07-23 7042
几种分布差异度量方法及其python实现
学习笔记】李宏毅2021春机器学习课程第6.2节:生成式对抗网络 GAN(二)
Harryline的博客
07-24 398
文章目录1 No pain,no GAN2 用 GAN 来生成一个 Sequence3 怎么评估一个 Generator 的好坏3.1 多样性问题 - Mode Collapse3.2 多样性问题 - Mode Dropping3.3 我们不想要一个没有创造力的 GAN.4 有条件的生成 1 No pain,no GAN GAN是以很难 Train 起来而闻名的,那为什么 GAN 很难被 Train 起来? 它有一个本质上困难的地方: Discriminator 做的事情是要分辨真的图片跟产生出来的图片
Wasserstein距离(最优传输距离:
热门推荐
weixin_44862361的博客
06-28 2万+
wasserstein距离
GAN中使用JS散度评估的问题
Forlogenの解忧杂货铺
03-31 2380
在Martin Arjovsky, Léon Bottou, Towards Principled Methods for Training Generative Adversarial Networks, 2017, arXiv preprint这篇论文中,作者发现在选择不同的epoch时,随着迭代次数的增加,它们的交叉熵都会减小到一个很低的值,同时准确度也都会到达1.0 但是通过JS散度来直...
李宏毅深度学习GAN课程PPT
06-08
通过学习李宏毅教授的深度学习GAN课程,你可以系统地掌握生成式对抗网络的核心概念,进一步提升在深度学习领域的理论知识和实践技能。无论是对学术研究还是工业界应用,这都将是一份宝贵的参考资料。
gan-master.zip_GaN_tensorflow_样本生成_深度学习_深度学习gan
07-14
标题中的“gan-master.zip_GaN_tensorflow_样本生成_深度学习_深度学习gan”表明这是一个关于使用TensorFlow框架实现Generative Adversarial Networks(GANs)的项目,用于生成样本的深度学习教程或代码库。...
深度学习GAN相关毕业设计项目&写作技巧&答辩ppt
最新发布
01-27
【深度学习GAN相关毕业设计项目&写作技巧&答辩ppt】是一个关于使用生成式对抗网络(GAN)进行图像风格迁移的毕业设计项目。该研究旨在探索如何利用深度学习,特别是GAN,来实现不同图像风格之间的转换。以下是这个...
python深度学习gan网络
07-03
在Python深度学习领域,Generative Adversarial Networks(GANs)是一种极其...综上所述,Python深度学习GAN网络在人脸识别任务中具有广泛的应用潜力,通过不断优化和调整,我们可以构建出高质量的人脸生成和识别系统。
机器学习GAN框架初探.pdf
09-24
【机器学习GAN框架初探】 GAN生成对抗网络)是一种基于深度学习的创新性框架,最初设计用于生成高质量的样本,特别是在图像生成领域表现出色。GAN由两部分组成:生成器(Generator)和判别器(Discriminator)。...
GAN网络:JS散度与Wasserstein距离
冷月无声的博客
04-01 2557
目录 1 生成模型与判别模型的区别 2 各种距离&散度的度量 2.1 香农熵 2.2 信息熵 2.3 交叉熵 2.4 KL散度(相对熵) 2.5 JS散度 2.6 Wasserstein距离 1 生成模型与判别模型的区别 生成模型:对数据的联合分布建模,从统计角度表示数据分布与数据生成方式,收敛速度快 常见生成模型有:隐马尔可夫模型HMM、朴素贝叶斯模型、高斯...
GAN网络中的Normalization汇总
xinxiang7
06-14 1016
Batch Normalization Weight Normalization Spectral Normalization
NVIDIA新作解读:用GAN生成前所未有的高清图像(附PyTorch复现) | PaperDaily #15
Paper weekly
11-16 1万+
在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。 在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。 点击本文底部的「阅读原文」即刻加入社区,查看更多最新论文推荐。 这是 PaperDaily 的第 15 篇文章 本期推荐的是 NVIDIA 投稿 ICLR 2018 的新作 Progre
GAN的理解总结
xiaoyaolangwj的博客
06-24 964
资料整理自:李宏毅2021春机器学习课程 深度学习有两种模式: 一种是判别式模型,一种是生成式模型。 前面我们接触的大多是判别式模型,简单说底层思维的本质是分类,要么是对整个图像类别的分类判断(图像分类),要么是对图像中区域的类别判断(目标检测),甚至说图像中每个元素点的类别判断(语义分割)。这些都是判别式模型。 另外一种是生成式模型,使人们对计算机创造力(创作力)的需求。我们在生成式模型中的需求是希望生成与我们期望数据(或已有数据集)非常相关或者非常近似的数据。 如下图:我们希望和也就是说生成数
海量案例!生成对抗网络GAN)的18个绝妙应用
读芯术的博客
07-30 1万+
全文共6531字,预计学习时长13分钟图片来源:pexels.com/@gravitylicious生成对抗网络GAN)是生成模型的一种神经网络架构。生成模型指在现存样...
GAN是如何工作的?在MNIST数据集上如何演示GAN的一个简单实现?
人邮异步社区
11-05 947
从伪造活动门票的故事中,可以非常直观地看出GAN的思想。为了清楚地理解GAN是如何工作的以及如何实现它们,本节将会在MNIST数据集上演示GAN的一个简单实现。 首先,需要构建GAN网络的核心,它由两个主要部分组成:生成器和判别器。生成器将会尝试从某个特定的概率分布中想象或者伪造数据样本;而可以访问和查看实际数据样本的判别器将会判断生成器的输出是在设计中存在缺陷还是它与原始数据样本非常接近。与前...
文字风格迁移
云淡风轻_的博客
07-30 1214
文章目录文字风格转换cycle GAN做法文字与语音和图像有所不同,不能合并做梯度下降和梯度上升了(不能微分)无法微分问题的解决方法:ScratchGAN:把各式各样用RL训练生成器的tips都试了一遍更多的转换举例:文字的starGAN:style transformer 语音风格转换:男声变女声 文字风格转换cycle GAN做法 通常正负面的句子不成对出现,所以使用无监督学习的方法 要做这个任务:Cycle GAN 训练一个discriminator识别器看很多正面的句子,学到识别正面的句子
GAN为什么不适合文本任务?
Jiashilin
05-18 2394
只有在数据连续的情况下,你才可以略微改变合成的数据,而如果数据是离散的,绝对不可以改变合成数据,一点都不可以。 例如,如果你输出了一张图片,其像素值是1.0,那么接下来你可以将这个值改为1.0001。如果你输出了一个单词“penguin”,那么接下来就不能将其改变为“penguin + .001”,因为没有“penguin +.001”这个单词。如果想改的话,你必须将“penguin”变为“os...
cpoint 两个点距离_Wasserstein距离学习笔记
weixin_39900468的博客
11-28 633
本文参考 Lilian Weng的文章《From GAN to WGAN》From GAN to WGAN主要针对文中所提到的Wasserstein距离展开,做一些笔记与大家分享。对于绝大多数的机器学习问题,尤其是预测问题和隐变量模型(latent factor model)中,学习到数据集背后所服从的分布往往是模型所要解决的最终问题。在变分推断(variational inference)等领域...
深度学习GAN对抗网络在机器翻译中的推导与模型结构
深度学习中的生成对抗网络GANs)...总结来说,这个深度学习项目深入研究了GAN在机器翻译中的具体实现,包括生成器的注意力机制和判别器的特征提取方法,展示了如何通过数学推导来构建和训练这种复杂的神经网络模型。
写文章

热门文章

  • 【学习】backdoor attacks、Adversarial Attack on Images、Adversarial Attack on Audio 4863
  • 【学习】自注意力机制的改进方法、non-autoregressive sequence generation、point network 3975
  • ccf csp 游戏 100分代码 0ms 3287
  • 【学习】自监督学习2、GPT、PLM 1840
  • 【李宏毅】HW12 1835

最新评论

  • 【学习】adversarial attack、evasion attacks

    LW0020: 求问这是哪里的教程。这对我很重要,研0入门表情包

  • 【李宏毅】HW12

    Raphael9900: 看看路径是不是对的

  • 【李宏毅】HW12

    weixin_50894238: 运行的时候出现系统找不到相应的文件

  • 【学习】life long learning

    智慧地球(AI·Earth)社区: 博主文章质量很高,表情包,凤⭐尘必须给三连支持了。我正在参加CSDN创作者的申请,欢迎大佬给个关注三连哇! 这是我的博客链接:https://blog.csdn.net/qq_36396104?type=blog 欢迎大佬加入我创办的互粉社区 (https://bbs.csdn.net/forums/together),共同进步!表情包

  • 【学习】domain adaptation、BERT

    不吃香菜哇: 大佬好文章、已三连、点赞+收藏+关注。如果可以的话麻烦给个星星、谢谢:https://bbs.csdn.net/topics/611389800

大家在看

  • C++ | Leetcode C++题解之第429题N叉树的层序遍历
  • C语言 | Leetcode C语言题解之第429题N叉树的层序遍历
  • 【已解决 含pytorch 代码调试分析】pytorch 数据类型基础,与Python数据类型的区别,为什么要另外设置新的pytorch 数据类型? 305
  • Python | Leetcode Python题解之第429题N叉树的层序遍历
  • Golang | Leetcode Golang题解之第429题N叉树的层序遍历

最新文章

  • 机器学习HW15元学习
  • 【学习】Reptile、梯度下降的LSTM、Siamese Network、原型网络、匹配网络、关系网络
  • 【学习】Meta Learning、
2023年16篇
2022年35篇

目录

目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43元 前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

玻璃钢生产厂家德兴玻璃钢关公雕塑上海特色商场美陈现价玻璃钢人物雕塑公司昆山玻璃钢雕塑生产厂家玻璃钢雕塑要点佛山人物玻璃钢雕塑关公玻璃钢雕塑哪家专业玻璃钢小品雕塑施工厂家来宾玻璃钢雕塑作品西藏石雕雕塑玻璃钢玻璃钢景观雕塑厂商多边形玻璃钢花盆价格山东火烈鸟玻璃钢雕塑价格定制景观小品玻璃钢狮子雕塑黑色大口径玻璃钢花盆青岛市玻璃钢人物雕塑生产商广州哪里的玻璃钢雕塑造型曲阳创想玻璃钢雕塑厂襄阳玻璃钢雕塑摆件厂家贵阳环保玻璃钢雕塑设计南宫欧式人物玻璃钢雕塑安徽人物玻璃钢雕塑多少钱玻璃钢雕塑的几大因素商场中庭美陈倒挂树许昌锻铜玻璃钢雕塑定做小白兔玻璃钢雕塑商丘玻璃钢人物雕塑加工威海市玻璃钢人物雕塑报价玻璃钢仿真水果雕塑怎么买开福玻璃钢雕塑厂家香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声单亲妈妈陷入热恋 14岁儿子报警汪小菲曝离婚始末遭遇山火的松茸之乡雅江山火三名扑火人员牺牲系谣言何赛飞追着代拍打萧美琴窜访捷克 外交部回应卫健委通报少年有偿捐血浆16次猝死手机成瘾是影响睡眠质量重要因素高校汽车撞人致3死16伤 司机系学生315晚会后胖东来又人满为患了小米汽车超级工厂正式揭幕中国拥有亿元资产的家庭达13.3万户周杰伦一审败诉网易男孩8年未见母亲被告知被遗忘许家印被限制高消费饲养员用铁锨驱打大熊猫被辞退男子被猫抓伤后确诊“猫抓病”特朗普无法缴纳4.54亿美元罚金倪萍分享减重40斤方法联合利华开始重组张家界的山上“长”满了韩国人?张立群任西安交通大学校长杨倩无缘巴黎奥运“重生之我在北大当嫡校长”黑马情侣提车了专访95后高颜值猪保姆考生莫言也上北大硕士复试名单了网友洛杉矶偶遇贾玲专家建议不必谈骨泥色变沉迷短剧的人就像掉进了杀猪盘奥巴马现身唐宁街 黑色着装引猜测七年后宇文玥被薅头发捞上岸事业单位女子向同事水杯投不明物质凯特王妃现身!外出购物视频曝光河南驻马店通报西平中学跳楼事件王树国卸任西安交大校长 师生送别恒大被罚41.75亿到底怎么缴男子被流浪猫绊倒 投喂者赔24万房客欠租失踪 房东直发愁西双版纳热带植物园回应蜉蝣大爆发钱人豪晒法院裁定实锤抄袭外国人感慨凌晨的中国很安全胖东来员工每周单休无小长假白宫:哈马斯三号人物被杀测试车高速逃费 小米:已补缴老人退休金被冒领16年 金额超20万

玻璃钢生产厂家 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化